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We consider the inverse coefficient problem of locating the interface positions
arising in frequency sounding of layered media. Such a problem is of particular in-
terest in the exploration of geophysics, underwater acoustics and electromagnetics,
optical sensing, and so forth. We found that a simplified algorithm can be constructed
to determine the approximate positions of interfaces. Unlike the conventional non-
linear least squares, this algorithm does not require the time-consuming constrained
optimisation. Instead, the predictor–corrector method is applied to solve numeri-
cally the auxiliary Cauchy problem for a Riccati equation. The feasibility of this
algorithm is demonstrated in computational experiments with a model problem of
electromagnetic frequency sounding of layered media. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Apparently, the term sounding was first introduced in the exploration of geophysics
in connection with using the natural or controlled sources of the electromagnetic field
for probing Earth’s crust (see, e.g., [1, 2]). One of the most used modes of sounding,
frequency sounding, consists of determining the spatial distribution of material properties,
e.g., the conductivity, from boundary observations of the frequency dependence of certain
functionals of the reflected field. Generally, the spatial distribution of a suitable material
property recovered from frequency sounding data includes information about the geometry
of inhomogeneities. However, in the case of a layered model, it is meaningful to consider two
sequential problems. The first problem consists of locating the interfaces between layers,
whereas the second problem consists of determining the spatial distribution of material
properties inside each layer. It is clear that the solution of the first problem is treated
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as a priori information when solving the second problem. The goal of this paper is to
present a simple, but efficient, numerical technique for estimating the interface locations
from frequency sounding data. Although we focus mainly on electromagnetic frequency
sounding, the proposed technique can also be applied with minor modifications to the
analogous problems arising in acoustic and seismic inversions and optical sensing.

It is recognised by the geophysics community that even for relatively simple layered
configurations, the conventional least-squares solution depends strongly on a priori infor-
mation about the stratification of such configurations (e.g., a number of layers) and on a
method of optimisation (see, e.g., [3]). For instance, it is well known (see, e.g., [4]) that
increasing the number of layers in a model configuration may generate several artefacts.
In particular, the spurious thin conductive layers may appear in the recovered conductivity
profile. This fact can be explained by the multiextremality of the residual objective func-
tions, i.e., they may have many local minima. In many realistic cases, the multiextremality
of such objective functions is more typical than exceptional (see, e.g., [3]), especially when
dealing with incomplete and noisy data. Under these conditions, the numerical techniques
(see, e.g., [5, 6]) based on the gradient or Newton-like methods may fail if the starting vec-
tor is improperly chosen. It should also be pointed out that applying the so-called damped
(regularised) least squares (see, e.g., [7]), i.e., actually Lagrange’s or Tikhonov’s smoothing
functionals, cannot guarantee the strict convexity of the corresponding objective function.

In the mathematics literature, there are two general approaches to global optimisation.
The first approach is to construct the global search algorithms, such as the Lipschitzian
optimisation algorithms (see, e.g., [8]), genetic algorithms [9], and simulated annealing
algorithms [10]. The second approach is to convexify the originally multiextremal objective
function, allowing the use of numerical methods of convex programming. This approach
has been recently developed using either Carleman’s weight functions [11–14] or the layer
stripping technique [16]. Obviously, in the case of a layered medium, any of these approaches
could also be used for locating the interfaces. However, splitting the general inverse problem
of frequency sounding into the two sequential problems indicated above allows us to consider
separately the problem of locating the interfaces without knowing the material properties.
It becomes possible due to our finding that the points of discontinuity of the conductivity
profile σ(z) imply the critical points of the second derivative of a certain function. This
function satisfies an auxiliary boundary value problem for a Riccati equation that resulted
from some identical transformations of the original boundary value problem (see [11–15]),
and the physically meaningful conjectures on the solution of the auxiliary problem. As a
result, the Riccati equation does not contain the unknown function σ(z), and the Cauchy
condition is determined from the frequency sounding data. Thus, the problem of locating the
interfaces can be reduced to computing the numerical solution of the Cauchy problem for
the Riccati equation and determining the corner points of its solution. After the interfaces
are located, one can solve the problem of determining the unknown conductivity vector via
any technique indicated above or even via any regularised gradient of Newton-like methods.
However, in this paper we do not address this problem. We focus mainly on the problem of
locating the interfaces.

It should also be pointed out that in Section 1.3 we make some conjectures when re-
ducing the overdetermined boundary value problem for an integrodifferential equation to
the Cauchy problem for a Riccati equation. Although these conjectures are not rigorously
proven, they are physically meaningful for at least low-frequency electromagnetic sounding
of layered conductive configurations, and the numerical study demonstrates their feasibility.
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The paper is arranged as follows. In Section 2, we formulate the problems and justify
the basic propositions. In Section 3, we construct a simplified algorithm for locating the
interfaces. In Section 4, to demonstrate the feasibility of the proposed approach, we perform
some computational experiments with the model problem of frequency electromagnetic
sounding of layered media. In a short Section 5, we conclude the paper.

2. THEORY

2.1. Problem Formulation

For brevity, we restrict our consideration to the 1-D model of magnetotelluric (MT) fre-
quency sounding of a layered conductive medium at sufficiently low frequencies. Specifi-
cally, consider the three-layer configuration whose electrical conductivity distribution is

σ(z) =




0, for z < 0,

σ (z), for 0 < z < L,

σb, for z > L,

(1)

where σ(z) ≥ const > 0 is an arbitrary piecewise continuous function and σb = const > 0,
such that σb � σ(z). In MT sounding, the electromagnetic field of distant natural sources
varies very slowly in the horizontal directions on Earth’s surface. It is, therefore, as-
sumed that a source is a plane elctromagnetic wave normally incident on the surface
z = 0, and the electromagnetic field in layered media depends only on depth z. With-
out loss of generality, we consider the TE mode of MT sounding; i.e., we assume that
E = (Ex , 0, 0), H = (0, Hy, Hz). Also, we assume that the time factor is exp(−ıωt). The
1-D model of MT frequency sounding was first formulated and studied by Tikhonov [1]
and Cagniard [2] in the early 1950s of the 20th century. Since then, it has been extensively
tested against simulated and field data and its consistency with the reality has been well
established (see, e.g., [17]).

It is well known from the contemporary geophysics literature (see, e.g., [17]) that the
governing equation for the source-free TE field inside an inhomogeneous layer 0 < z < L
can be obtained from Maxwell’s equations by excluding the magnetic component of the
electromagnetic field. The final form is

∇2 Ex + (ε0ε(z)ω
2µ + ıωµσ(z))Ex = 0, (2)

where ε0 = 8.85 × 10−12 F/m is the absolute permittivity of vacuum, µ = 4π × 10−7 H/m
is the magnetic permeability, which is assumed to be constant everywhere, and ε(z) is
the spatial distribution of relative permittivity in the inhomogeoeus layer. In conductive
media at low frequencies, the loss tangent tan δ = σ(z)/ε0ε(z)ω 
 1; i.e., the induction
is negligibly small. From a physical standpoint, this means that in such media the wave
process is not practically realised. Therefore, the term ε0ε(z)ω2µ in (2) is usually neglected
(see, e.g., [1, 2]) when deriving the governing equation in the form

∇2 Ex + ıωµσ(z)Ex = 0, 0 < z < L . (3)

Assume that the plane incident wave is Einc
x (z) = E0 exp(ıkaz), where ka = ω

√
ε0µ is the

wavenumber in the air. Also, we assume that the electric field (Ex (z) − Einc
x (z)) satisfies the
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radiation condition as z → ∞. Under such assumptions, we derive the boundary conditions
for Eq. (3) by exploiting the continuity of tangential components of both the electric and the
magnetic fields at z = 0 and z = L . Since Hy = (−ıωµ)−1∂ Ex/∂z, we obtain the following
boundary conditions:

Ex |z=0,z>0 = Ex |z=0,z<0, (4)

∂ Ex

∂z

∣∣∣∣
z=0,z<0

= ∂ Ex

∂z

∣∣∣∣
z=0,z>0

, (5)

Ex |z=L ,z<L = Ex |z=L ,z>L , (6)

∂ Ex

∂z

∣∣∣∣
z=L ,z<L

= ∂ Ex

∂z

∣∣∣∣
z=L ,z>L

, (7)

Introducing the normalised electric field u(z, ω) = Ex (z, ω)/Ex (0, ω) and using the
boundary conditions (4), (6), and (7), we derive the boundary value problem governing
the TE field inside the inhomogeneous layer. Indeed, it follows from (4) that u(0, ω) = 1.
Taking into account the fact that in the homogeneous half-space z > L there exists only the
transmission wave T (ω) exp(ıkbz), where kb = √

ıωµσb, both conditions (6) and (7) result
in the Robin condition u′(L , ω) − ıkbu(L , ω) = 0. Thus, we arrive at the scalar boundary
value problem in the inhomogeneous layer:

u′′ + ıµωσ(z)u = 0, 0 < z < L , (8)

u′(0, ω) = 1, (9)

u′(L , ω) − ıkbu(L , ω) = 0. (10)

In MT sounding, the admittance

Y(ω) = Hy(z, ω)

Ex (z, ω)

∣∣∣∣
z=0,z>0

= −(ıωµ)−1u′(0, ω)

is usually observed on the surface z = 0. This fact allows us to separate problem (8)–(10)
from the boundary value problem in the homogeneuos half-space z < 0 with the Robin
boundary condition u′(0, ω) − ıωµY (ω) = 0.

Let u ∈ H 2(0, L), where H 2(0, L) is a Sobolev space. Note that problem (8)–(10) is
the Sturm–Liouville problem. Therefore, under conditions formulated above, it is uniquely
solvable for any ω ∈ [ωmin, ∞), where ωmin > 0 is a certain real number (see [15] for
details).

Let Z = {zı }N
ı=1 be a set of points of discontinuity of the conductivity profile σ(z). Then,

we formulate the problem of locating the interfaces as follows.
Given the function u′(0, ω) = −ıωµY (ω), and the normalised electric field, u(z, ω)

satisfies the boundary value problem (8)–(10). Determine the set Z.

2.2. Nonlinear Least Squares

Consider the inverse problem posed above. Since the nonlinear operator generated by
this problem depends on the unknown distribution of conductivity σ(z), applying the con-
ventional nonlinear least squares leads to a minimising of the residual objective function on
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a set of admissible functions σ(z). Moreover, our main goal is to determine the set Z rather
than the function σ(z). Therefore, it is natural to reformulate the original inverse problem
in terms that allow eliminating the unknown function σ(z) from the differential equation,
preserving only the implicit dependence of u(0; ω) on σ(z). Such a procedure was recently
developed [14, 15] as a part of the convexification approach.

We first transform the original inverse problem, introducing the new function v(z; ω) =
ln u(z; ω). We obtain

v′′ + (v′)2 = −ıωµσ(z), 0 < z < L , (11)

plus three boundary conditions at z = 0 and z = L . Introducing another function q(z; ω) =
∂

∂ω
( v

ω
) (and, hence, v(z; ω) = −ω

∫∞
ω

q(z; ψ) dψ), we then obtain the overdetermined
boundary value problem

q ′′ − 2ωq ′
∞∫

ω

q ′ dψ +

 ∞∫

ω

q ′ dψ




2

= 0, 0 < z < L , (12)

q(0; ω) = ϕ1(ω), (13)

q ′(0; ω) = ϕ2(ω), (14)

q ′(L; ω) = ϕ3(ω), (15)

where

ϕ1(ω) = ∂

∂ω

[
ln u(0; ω)

ω

]
, (16)

ϕ2(ω) = − ∂

∂ω

[
2

ωu(0; ω)

]
, (17)

ϕ3(ω) =
√

2µσb

2

1 − ı

ω3/2
. (18)

It can be seen that the integrodifferential operator in (12) does not depend on the unknown
function σ(z), whereas the boundary conditions at z = 0 contain the given function u(0; ω).
Therefore, the inverse model (12)–(15) is more appropriate for further analysis. The exis-
tence of integrals in (12) was proven in [14].

To reformulate the problem of locating the interfaces in terms of problem (12)–(15), it
is necessary to establish the connection between the least-squares solution of this problem
and the sought set Z . Before we embark on an analysis, we first notice that the set Z is
the same for both the function σ(z) and u′′(z; ω) for all ω. This follows immediately from
the integral representation of u(z; ω) via Green’s function for problem (8)–(10). This fact
implies the following conjecture. Since the transformation

∂

∂ω

[
ln u(z; ω)

ω

]
, ω =/ 0,

is continuous, a certain derivative of the least-squares solution q(z; ω) should also have
points of discontinuity coinciding with points {zı }N

ı=1. Now, we shall prove this conjecture,
showing that precisely the third derivative q ′′′(z; ω) has such points.
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Let zı ∈ Z be an arbitrary point. Denote σ+ = limz→zı + σ(z) and σ− = limz→zı − σ(z).
Since v′ = u′/u, v′′ = u′′/u − (u′/u)2, then the functions v, v′ are continuous at zı . How-
ever, the function v′′ has a discontinuity at zı since the function u′′ is discontinuous. Then,
it follows from (11) that

v′′
+ − v′′

−
ω

= −ıµ(σ+ − σ−).

Hence,

q ′′
+ − q ′′

− = ∂

∂ω

[
v′′

+ − v′′
−

ω

]
= 0.

This means that the second derivative q ′′ is continuous at zı . Calculating the thrid derivatives
of functions u, v, we obtain

u′′′ = −ıωµσ ′u − ıωµσu′, (19)

v′′′ = u′′′/u − 3(u′′ · u′)/u2 + 2(u′/u)3. (20)

Since σ ′(z) = 0 almost everywhere, the first term in (19) vanishes at all continuous points,
so that we have from (20) at zı

v′′′
+ − v′′′

−
ω

= 2ıµ(σ+ − σ−)
u′

u
.

This equality implies

q ′′′
+ − q ′′′

− = 2ıµ(σ+ − σ−)
∂

∂ω

u′

u
.

This means that the functions q ′′′(z; ω), σ (z) have the discontinuity at the same point zı .
This is true for any point zı ∈ Z . In other words, the function q ′′′ and σ have the same set
of points of discontinuity.

However, it is impractical to employ the boundary value problem (12)–(15) as an inverse
model of frequency sounding, because it requires the frequency sounding data measured
at all possible positive frequencies. Meanwhile, the practitioners are usually dealing with
sufficiently limited frequency range [ω

¯
, ω̄]. In particular, in this paper we consider the

low-frequency case. Therefore, we rewrite this problem (12)–(15) in the form

q ′′ − 2ωq ′
ω̄∫

ω

q ′ dψ +
( ω̄∫

ω

q ′ dψ

)2

− F(q ′, ω, ω̄) = 0, 0 < z < L , (21)

q(0; ω) = ϕ1(ω), (22)

q ′(0; ω) = ϕ2(ω), (23)

q ′(L; ω) = ϕ3(ω), (24)

where

F(q ′, ω, ω̄) = 2ωq ′
∞∫

ω̄

q ′ dψ −
( ∞∫

ω̄

q ′dψ

)2

− 2

ω̄∫
ω

q ′ dψ ·
∞∫

ω̄

q ′ dψ.
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We shall show below that the function F(p, ω, ω̄), being sufficiently small for an appro-
priate ω̄, can be estimated a priori via computer simulation.

Denoting p = q ′, we obtain the boundary value problem

D(p) ≡ p′ − 2ωp

ω̄∫
ω

p dψ +
( ω̄∫

ω

p dψ

)2

− F(p, ω, ω̄) = 0, 0 < z < L , (25)

p(0; ω) = ϕ2(ω), (26)

p(L; ω) = ϕ3(ω). (27)

Obviously, functions p′′ and q ′′′ have the same set of points of discontinuities. However,
problem (25)–(27) is still overdetermined. Therefore, it is meaningful to search for its
least-squares solution defined as a minimiser of the functional

J0(p) =
ω̄∫

ω
¯

L∫
0

|D(p)|2 dz dω (28)

subject to (26) and (27).
From a theoretical standpoint, the result established above allows the reformulation of

the problem of locating the interfaces in terms of minimising (28) subject to (26) and (27).
However, there is no guarantee that the functional J0(p) is strictly convex. In this case,
there may exist many local minima, and a search for the global minimum is very difficult
to perform. Therefore, we shall reduce the overdetermined problem (25)–(27) to a more
simple problem resulting from the physically meaningful estimates of the integral terms∫ ω̄

ω
p dψ ,

∫∞
ω̄

p dψ .

2.3. Reduction to the Cauchy Problem for a Riccati Equation

Since the function p′′(z; ω) is discontinuous at every point zı for all ω > 0, we fix a
certain ω = ω0. According to the mean-value theorem for integrals, there exists a certain
ω̂ ∈ [ω0, ω̄] such as

p(z; ω̂) = 1

ω̄ − ω0

ω̄∫
ω0

p(z; ψ) dψ. (29)

On the other hand, the function p(z; ω̂) can obviously be represented in the form

p(z; ω̂) = p(z; ω0) + �p(z; ω0, ω̂), z ∈ [0, L]. (30)

For instance, in computational experiments with low-frequency electromagnetic sounding
of layered marine configurations, the C-norm of the function �p is small compared to
the function p(z; ω) for all ω ∈ [ω0, ω̄] (see Fig. 2), and the interval [ω0, ω̄] is small as
well. It allows us to estimate the function �p from computer simulation with the simple
background model indicated in Section 3.3 and to use such an estimate when solving the
inverse problem for any layered configuration.
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We obtain from (29) and (30)

ω̄∫
ω0

p(z; ψ) dψ = (ω̄ − ω0)(p(z; ω0) + �p). (31)

Substituting the representation (31) in (25), we obtain the Riccati equation

p′ = A(ω̄, ω0)p2 + B(ω̄, ω0, ε, �p)p + C(ω̄, ω0, ε, �p),

where

A(ω̄, ω0) = (ω̄ − ω0)(3ω0 − ω̄), (32)

B(ω̄, ω0, ε, �p) = 2(ε(z) + (ω̄ − ω0)�p)(2ω̄ − ω0), (33)

C(ω̄, ω0, ε, �p) = −(ε(z) + (ω̄ − ω0)�p)2, (34)

and ε(z) = ∫∞
ω̄

p dψ .
Noticing that the boundary condition (27) does not depend on the frequency sounding

data, we make a conjecture that the neglect of this condition does not affect significantly the
points of discontinuities of p′′(z; ω), though it certainly affects the least-squares solution.
Therefore, we shall consider an auxiliary Cauchy problem,

s ′ = A(ω̄, ω0)s
2 + B(ω̄, ω0, ε, �s)s + C(ω̄, ω0, ε, �s), (35)

s(0; ω) = ϕ2(ω), (36)

rather than the overdetermined problem (25)–(27), assuming that the points of discontinu-
ities of s ′′(z; ω) are close enough to the points of discontinuities of p′′(z; ω) on the interval
[0, L]. Thus, the conjecture made above allows us to reformulate the problem of locating
the interfaces in a layered medium as follows.

Given the function u(0, ω), the function s(z, ω) satisfies the Cauchy problem (35)–(36).
Determine approximately the set Z.

Unlike the least-squares solution, the solution of the Cauchy problem (35)–(36) can be
efficiently computed. Moreover, due to the smallness of the interval [ω0, ω̄], the coefficient
A(ω̄, ω0) in the Riccati equation (35) is sufficiently small. This means that although the
numerical solution of the Cauchy problem for the Riccati equation is, in general, unstable
with respect to both the small perturbations of ϕ2(ω) and round-off errors, in our case, the
manifestations of such an instability are expected to be sufficiently small.

3. COMPUTATIONAL ALGORITHM

Without loss of generality, we assume that the functions u(0; ω), s(z; ω0) are approxi-
mated by the corresponding discrete functions u = u(0; ω), sk = s(zk; ω0) on the uni-
form grids

Gz = {zk : zk = hz(k − 1), hz = L/(N − 1), k = 1, 2, . . . , N },
Gω = {ω : ω = ω

¯
+ hω( − 1), hω = (ω̄ − ω

¯
)/(M − 1),  = 1, 2, . . . , M}.



430 TIMONOV AND KLIBANOV

Given u , ε , and the estimate of �s , ω̄, ω0, estimate {zı }n
ı=1.

Step 1. Compute the Cauchy condition ϕ2 using (17) at ω = ω0. Since the function
u(0; ω) is, in general, given approximately, we employ the optimal regularisator [18] for
the numerical differentiation (see the brief description below).

Step 2. Compute the coefficients A, B, C using (32)–(34).
Step 3. Compute the particular solution s̃ of the Cauchy problem (35)–(36) using the

Adams–Bashforth–Moulton scheme of the predictor–corrector method of the fourth order.
In accordance with this scheme, the predictor is constructed as

s̃k+1 = s̃k + hz

12
(23�k − 16�k−1 + 5�k−2) + O

(
h4

z

)
, (k = 3, 4, . . . , N − 1), (37)

and the corrector has the form

s̃k+1 = s̃k + hz

12
(5�k+1 + 8�k − �k−1) + O

(
h4

z

)
, (k = 2, 3, . . . , N − 1), (38)

where s̃k = s̃(zk) and �k = As̃2
k + Bs̃k + C . It is clear that s̃1 = ϕ(ω0). The values s̃k (k =

2, 3) in (37) are computed as

s̃k = s̃k−1 +
zk∫

zk−1

�(ξ, s̃) dξ.

In (38), the value s̃2 is taken directly from (37), and the others are the admissible roots of
the quadratic equation with respect to s̃k+1.

Step 4. Compute the second derivative s̃ ′′ of the particular solution s̃ by the optimal
operator for the numerical differentiation.

Step 5. Determine approximately the points of discontinuities {zı }n
ı=1, analising the criti-

cal points of the discrete function s̃ ′′. Specifically, we adopt the following procedure. Recall
that the points of discontinuities of q ′′′ are the so-called corner points. This means that the
inequality t+(zı ) =/ t−(zı ) is valid for all zı . Here, t+(zı ) = limz→zı + t, t−(zı ) = limz→zı − t,
and t is the unit tangential vector. However, due to the regularising property of the opti-
mal operator, these points are indicated as the smoothed corner points. Let z̃ı be any such
point, and let [z̃ı − r, z̃ı + r ], r > 0, be a sufficiently small area of this point. Choosing
any two couple of points (z, s̃(z)) from the left and from the right of every critical point,
we derive the equations for a couple of straight lines that are collinear to the corresponding
tangential vectors. Finally, the point of intersection of these lines gives us the estimate
of zı . Although in our computational experiments the smoothed corner points have been
interactively detected, this procedure can be authomised.

Now, we briefly describe the optimal regularisator Ropt approximating the operator D ≡
∂/∂z. Note that in accordance with [18], the optimal regularisator is defined as a minimiser
of the residual ‖∂/∂z − R‖ on a certain class of all linear operators R acting in the L2

space. Let fδ(z) be a certain approximation of f (z), such as ‖ fδ − f ‖C[0,L] ≤ δ, where
δ > 0 is the known positive number. Also, we assume that the function f (z) belongs to
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the set

M = { f (z): f ′′ ∈ C[0, L], ‖ f ′′‖ ≤ m, m > 0}.

Then, it follows directly from [18] that the optimal regularisator is given by

Ropt fδ = fδ(z + H(δ, m)) − fδ(z − H(δ, m))

2H(δ, m)
, (39)

where H(δ, m) =
√

2δ
m is the “regularising” step. In computational practice, the parameter

δ and m are determined from computer simulatin.

4. NUMERICAL EXAMPLES

In this section we perform some computational experiments with simulated data using
both the forward and the inverse models of electromagnetic frequency sounding of layered
media.

4.1. Model Problems

As a forward model problem, we consider the boundary value problem (8)–(10). For
the purpose of computing, we rewrite this problem in dimensionless variables α = ω/ωmin,
ξ = z/2L as

u′′(ξ ; α) + k̂2(ξ ; α)u(ξ ; α) = 0, 0 < ξ < 1/2, (40)

u′(0; α) = 1, (41)

u′(1/2; α) − ı k̂bu(1/2; α) = 0, (42)

where k2(ξ, α) = 4L2ıµωminασ(ξ), kb = √
2L(1 + ı)

√
ωminαµσb. In computations, we

introduce the function t (ξ ; α) = −u′(ξ ; α)/u(ξ ; α), reducing this problem to the Cauchy
problem for the Riccati equation. As an isotropic conductive medium, we consider a typical
marine configuration consisting of the highly conductive seawater layer and conductive
near-seafloor sediments, so that the inhomogeneous layer 0 < ξ < 1/2 consists of several
layers. Then, the conductivity profile σ(ξ) is given by

σ(ξ) =




0, for ξ < 0,

σ1, for 0 < ξ < ξ1,
· · · · · ·
σı , for ξı−1 < ξı < ξı ,
· · · · · ·
σn, for ξn < ξ < 1/2,

σb, for ξ > 1/2.

(43)

We formulate an inverse model problem as estimating the positions {zı }n
ı=1 via the solution of

the Cauchy problem (35)–(36), in which we replace formally the variables ω, ω0, z with the
variables α, α0, ξ , respectively. The Cauchy condition becomesϕ(α) = −4L∂(u−1(0; α))/

∂α. In computational experiments, the derivative over α has been computed via the optimal
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regularisator (39) assuming that the level δ of algorithmic errors in computing the frequency
sounding data u(0; α) does not exceed 5 × 10−4. In this connection, we did not model any
random perturbations (noise) of these data.

4.2. Scheme of Computational Experiments

Three specific marine configurations of the same inhomogeneous layer where L = 75 m
have been used in computational experiments. Such configurations are typical for the Baltic
sea. Both interface positions at z = 0 m and at z = L m were assumed to be known, and all
configurations contain air (z < 0 m), seawater, sediment layers, and bedrock (z > 75 m). The
first configuration contains only one sediment layer 40 m < z < 75 m, and the corresponding
conductivity profile is given by

σI (z) =




0 S/m, for z < 0 m,

0.8 S/m, for 0 m < z < 40 m,

0.2 S/m, for 40 m < z < 75 m,

0.001 S/m, for z > 75 m.

The second configuration is characterised by the conductivity profile

σII(z) =




0 S/m, for z < 0 m,

0.8 S/m, for 0 m < z < 40 m,

0.2 S/m, for 40 m < z < 55 m,

0.08 S/m, for 55 m < z < 75 m,

0.001 S/m, for z > 75 m;

i.e., it contains two sediment layers. The third configuration includes four sediment layers,
and the conductivity profile is given by

σIII(z) =




0 S/m, for z < 0 m,

0.8 S/m, for 0 m < z < 40 m,

0.2 S/m, for 40 m < z < 55 m,

0.08 S/m, for 55 m < z < 60 m,

0.4 S/m, for 60 m < z < 65 m,

0.08 S/m, for 65 m < z < 75 m,

0.001 S/m, for z > 75 m.

It can be noticed that the third configuration contains the thin highly conductive sediment
layer 60 m < z < 65 m situated between two relatively poorly conductive layers. From a
geological standpoint, such a configuration may be due to the porosity stratification. In other
words, in the third configuration, the sediment layer 55 m < z < 75 m with the conductivity
of 0.08 S/m may also be stratified over porosity. To reflect this, we have introduced this
configuration. To our knowledge, the detection of a thin highly conductive layer by any
existing method of electromagnetic sounding is a difficult problem.

Given the conductivity profile (43), we first simulated the frequency sounding data u(0; α)

using the Riccati solver for the forward Cauchy problem. Due to the high conductivity of
seawater, the frequency ω

¯
= 1 rad · Hz and ω̄ = 200 rad · Hz have been chosen. After
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the data were computed, we made a reduction to the Cauchy problem (35)–(36) as it was
described in Section 1.3, estimated the quantities ε(ξ), �s(ξ), α0, and applied the algorithm
described in Section 3 for locating the interfaces.

4.3. Numerical Results

To estimate the function ε(ξ), we first computed the solution u(ξ ; α) of the forward
problem (40)–(42) for all three configurations indicated above using the broader frequency
range [ω

¯
, �0] rad · Hz, where �0 = 5000 rad · Hz. Next, since the function q ′(ξ ; α) can be

expressed in the form

q ′ = α−1

[
u−1 ∂2u

∂α∂ξ
− u−2 ∂u

∂ξ
· ∂u

∂α

]
− α−2u−1 ∂u

∂ξ
,

we precomputed the function ε(ξ) = ∫ �0

ᾱ
q ′ dψ via quadratures. Figure 1 shows the results

of computations. The estimates of the remainder term for the second and third configurations
are almost the same.

Analysing these results, we notice that an appropriate estimate of ε(ξ) can be obtained
from computer simulation of the three-layer background configuration containing the air,

FIG. 1. The remainder integral ε(ξ) for the first (solid line), second (dotted line), and third (dashed line)
configurations. The results for the three-layer configuration are shown by the filled bullets.
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FIG. 2. The results of computer simulation of the function �p for the background configuration. The plot
of |p(ξ ; α0| is shown by the solid line. The dotted line corresponds to the plot of |p(ξ ; α̂|, and the dashed line
corresponds to the plot of |�p|.

seawater, and bedrock, and the background conductivity profile is given by

σ0(z) =




0 S/m, for z < 0 m,

0.8 S/m, for 0 m < z < 40 m,

0.001 S/m, for z > 40 m.

Such a priori information is often available in practice, and the forward problem (40)–(42)
can be analytically solvable for σ0(z) prior to locating the interfaces.

To choose an appropriate α0 and estimate the function �s, we computed the function
p(ξ ; α) for the background and three other configurations using the dimensionless analogues
of Eqs. (29) and (30). Figure 2 shows the results of such computations for the background
configuration and α = 0.95. In this computational experiment, we employed the frequency
range [1, 200] rad · Hz. The results for the other three configurations are almost identical, and
therefore, they are not shown in Fig. 2. Thus, the results of computational experiments show
that the appropriate estimates of the functions ε(ξ), �s can be obtained from the forward
modelling of the background three-layer configuration prior to locating the interfaces. In
the next computational experiments, we used the function |�p| indicated in Fig. 2 as an
estimate of �s.

We applied the algorithm indicated in Section 3 to the simulated frequency sounding
data. Figures 3, 4, and 5 show the regularised second derivatives of the function s(ξ ; α0)

computed for the first, second, and third configurations, respectively. It is clearly shown
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FIG. 3. The regularised second derivative of s(ξ ; α0) for the first configuration.

FIG. 4. The regularised second derivative of s(ξ ; α0) for the second configuration.
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FIG. 5. The regularised second derivative of s(ξ ; α0) for the third configuration.

that all these derivatives have the smoothed corner points, and the number of such points
equals the number of interfaces between the sediment layers. The positions of interfaces
determined in accordance with Step 5 of the algorithm are as follows: (i) z̃1 = 39.71 m
for the first configuration, (ii) z̃1 = 39.71 m, z̃2 = 55.00 m, and (iii) z̃1 = 39.71 m, z̃2 =
55.00 m, z̃3 = 59.71 m, z̃4 = 64.41 m. In all cases, the relative errors do not exceed 1%.
It should also be pointed out that in spite of use of the optimal operator for computing
both the first and the second derivatives of s(ξ ; α0), the latter one, being actually a function
of jumps, may contain some large oscillations situated in the seawater layer because of
the largest gradient of s ′(ξ ; α0), due to the skin effect. These oscillations could also be
interpreted as spurious layers. Fortunately, in all marine configurations, the depth of the
water column can be roughly estimated from the hydrographic maps, so we can exclude the
part of s ′′(ξ ; α0) associated with the water column and analyse the second derivative starting
with a sufficiently small area of the interface between the seawater and the first sediment
layer. For the same reason, we ignored the slight oscillations and a jump at the small area
of the interface between the sediments and bedrock. For the other models, however, the
analysis of the second derivative of s(ξ ; α0) requires special care.

5. CONCLUSIONS

We have presented an efficient algorithm for the problem of locating the interfaces arising
in frequency sounding of layered media. This algorithm has resulted from our main finding
that the points of discontinuity of the third derivative of the solution of a certain auxiliary
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boundary value problem are associated with the interface positions. The transition from the
original boundary value problem to such a problem was made using the identical transfor-
mations introduced previously by one of authors in connection with applying Carleman’s
estimates to the coefficient inverse problems.

Unlike the conventional nonlinear least-squares formulation, the proposed algorithm
does not require the time-consuming nonlinear optimisation procedure and it can be ef-
fectively implemented via the Riccati solver. We have illustrated its feasibility in several
computational experiments with electromagentic frequency sounding of layered marine
configurations. This algorithm has proven computationally to be very efficient at locating
the interfaces between near-seafloor sediment layers. We believe that a similar algorithm
can be constructed for acoustic frequency sounding of oceanic waveguides. We also believe
that the proposed approach can be successfully applied to optical sensing at near-infrared
frequencies. We reserve these issues for further publications.
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